- the smallest subring
- Математика: (if S consists of the single element x then R (x) , namely) минимальное подкольцо (containing x, is commutative)
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Subring — In mathematics, a subring is a subset of a ring, which contains the multiplicative identity and is itself a ring under the same binary operations. Naturally, those authors who do not require rings to contain a multiplicative identity do not… … Wikipedia
Ring homomorphism — In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the operations of addition and multiplication. More precisely, if R and S are rings, then a ring homomorphism is a function f : R → S such that … Wikipedia
Finitely-generated module — In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated R module also may be called a finite R module or finite over R.[1] Related concepts include finitely cogenerated modules, finitely… … Wikipedia
Binomial coefficient — The binomial coefficients can be arranged to form Pascal s triangle. In mathematics, binomial coefficients are a family of positive integers that occur as coefficients in the binomial theorem. They are indexed by two nonnegative integers; the… … Wikipedia
Injective module — In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z module Q of all rational numbers. Specifically, if Q is a submodule of some… … Wikipedia
Characteristic (algebra) — In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring s multiplicative identity element (1) in a sum to get the additive identity element (0); the ring is said… … Wikipedia
Integral domain — In abstract algebra, an integral domain is a commutative ring that has no zero divisors,[1] and which is not the trivial ring {0}. It is usually assumed that commutative rings and integral domains have a multiplicative identity even though this… … Wikipedia
Surreal number — In mathematics, the surreal number system is an arithmetic continuum containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals share… … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
Glossary of ring theory — Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. Contents 1 Definition of a ring 2 Types of… … Wikipedia
p-adically closed field — In mathematics, a p adically closed field is a field that enjoys a closure property that is a close analogue for p adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.[1] Contents 1… … Wikipedia